Counting symmetric and near-symmetric fullerene patches

Christina Graves • Stephen J. Graves

Received: 20 May 2014 / Accepted: 17 July 2014 / Published online: 27 July 2014
© Springer International Publishing Switzerland 2014

Abstract

We establish an exact method for drawing fullerene patches in the hexagonal tessellation of the plane. Using these embeddings, we then provide a closed form equation for the total number of symmetric and near-symmetric fullerene patches, up to isomorphism. The function depends only on parameters of the boundary code.

Keywords Fullerene • Fullerene patch • Boundary codes • Pseudoconvex patch • Nanocone

1 Introduction

A fullerene is a trivalent 2-connected plane graph with all faces hexagonal or pentagonal. A fullerene patch is a 2-connected plane graph with all faces hexagonal or pentagonal except one external face; all vertices not incident with the external face have degree three and those incident with the external face have degree two or three. The cycle bounding the external face is the boundary of the patch. Thus the boundary code is the sequence of degrees of vertices on the boundary in consecutive order, up to cyclic permutation or inversion. For instance, a pair of adjacent pentagons has boundary code 22232223 , or equivalently (2223) ${ }^{2}$.

Our interest is in a particularly nice type of fullerene patch. A patch is pseudoconvex if the boundary code does not contain consecutive 3's. Consecutive 3's on the boundary can be envisioned as a turn on the boundary "away from" the interior of the patch. An edge on the boundary incident with two 2 -valent vertices is a break edge, and the

[^0]path on the boundary of a pseudoconvex patch between two break edges is a side. A pseudoconvex patch has boundary code $2(23)^{\ell_{1}} 2(23)^{\ell_{2}} \cdots 2(23)^{\ell_{k}}$, and hence we say it has k sides with lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$. Following the notation of [5], a pseudoconvex patch with side lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{s}$ has side parameters $\left[\ell_{1}, \ell_{2}, \ldots, \ell_{s}\right]$. A pseudoconvex patch with all sides of equal length is symmetric; a near-symmetric patch will have side parameters $[n, n+1, n+1, \ldots, n+1]$ for some nonnegative integer n. We will refer to a face incident with both an n-side and an $n+1$-side as an ($n, n+1$)-corner, and we similarly define an $(n+1, n+1)$-corner.

Boundary codes of fullerene patches have been extensively studied, and there have been many algorithms to determine if a specific boundary code is realizable as a patch (see [1,2,4]). In [5], it was shown that symmetric and near-symmetric patches exist for the following values of n and s :

- $s=5$ and $n \geq 5$,
- $s=4$ and $n \geq 2$,
- $s=3$ and $n \geq 1$,
- $s=2$ and $n \geq 1$ for symmetric patches,
- $s=2$ and $n \geq 0$ for near-symmetric patches,
- $s=1$ and $n \geq 0$, and
- $s=0$ and $n \geq 0$ for symmetric patches.

These symmetric and near-symmetric patches are specifically of interest in the study of carbon nanocones, classified by Brinkmann and Van Cleemput [3]. In that article, the authors show that nanocones are in bijective correspondence with the set of symmetric and near-symmetric pseudoconvex fullerene patches, which they called cone caps. Further, Brinkmann and Van Cleemput provided an algorithm for generating all cone caps given the length of the shortest side. However, the algorithm is recursive in nature and no closed form for the number of patches as a function of minimum side length is provided via the algorithm.

This article is concerned with precisely that: to provide a constructive enumeration of pseudoconvex patches in order to give closed forms for the number of symmetric and near-symmetric patches. Unlike the algorithmic enumeration of [3], our construction is not recursive, and provides an exact value for the number of such patches as a function of the minimum side length n.

It suffices to determine the number of symmetric or near-symmetric patches with a pentagonal face on the boundary. If a patch does not have a pentagon on its boundary, it has some number of layers of hexagons before the first pentagonal face. Removing these layers of hexagons results in a symmetric or near-symmetric patch with shorter side lengths, as proven in [5]. We can then count all nonisomorphic patches on this "shorter" boundary inductively.

To this end, we provide a canonical method of embedding fullerene patches in the hexagonal tessellation of the plane, which we denote by Λ. Using this embedding and the geometry it provides, we determine an exact formula for the number of non-isomorphic symmetric and near-symmetric fullerene patches with two or three pentagonal faces, at least one of which is on the boundary.

Intuitively, we introduce a single pentagonal defect in the hexagonal tessellation Λ by identifying across a 60° sector with vertex at a face center. Carefully repeating

Fig. 1 The boundary of $[5,5,5,5]$ in Λ

this process until twelve pentagonal faces are created produces a fullerene; we limit ourselves to patches with at most three pentagonal faces. We make the following definition for the purpose of easing notation.

Definition 1 We define ϕ_{X} to be a 60° counterclockwise rotation of the plane with center at X. Note that if X is a face center in Λ, then ϕ_{X} is an automorphism of Λ.

If X is a face center and Y is the center of an adjacent hexagon, we produce a defect at X by identifying vertices, faces, and edges across the sector between the rays $X Y$ and $\phi_{X}(X Y)$. Hence the face with center X becomes a pentagon under the identification and all other resulting faces remain hexagonal.

2 Patches with 2 pentagonal faces

Drawing the patch in Λ
A patch Π with exactly two pentagonal faces will have side parameters $[n, n, n, n]$ if it is symmetric and $[n, n+1, n+1, n+1]$ if it is near-symmetric. Beginning with a break edge, we trace the boundary of Π in Λ. The boundary terminates with the same break edge. We label important faces on the boundary by their centers: F_{1} is the initial face, T_{1}, T_{2}, and T_{3} are the faces incident with the next three break edges in succession, and F_{3} is the terminal face. See Fig. 1.

As we will identify F_{1} and F_{3} by the removal of two 60° sectors, we will (by the following lemma) demonstrate that the placement of the first pentagonal face uniquely determines the location of the second. Having determined the locations of P_{1} and P_{2}, the removed sectors then are first between the ray $P_{1} F_{1}$ and $P_{1} F_{2}$, where $F_{2}=\phi_{P_{2}}\left(F_{1}\right)$, and second between the rays $P_{2} F_{2}$ and $P_{2} F_{3}$.

Fig. 2 A particular placement of P_{1} and P_{2}

Lemma 1 Given two distinct points F_{1} and F_{3} in a plane, let X be the unique point such that $\phi_{X}^{2}\left(F_{1}\right)=F_{3}$. Then for any point P_{1}, there is a unique point P_{2} such that

$$
\phi_{P_{2}} \phi_{P_{1}}\left(F_{1}\right)=F_{3} .
$$

Moreover, $\phi_{X}^{-2}\left(P_{1}\right)=P_{2}$.
Proof Suppose F_{1}, F_{3}, and P_{1} are given. Let $F_{2}=\phi_{P_{1}}\left(F_{1}\right)$, and let P_{2} be the unique point such that $\phi_{P_{2}}\left(F_{2}\right)=F_{3}$. So then $\phi_{P_{2}} \phi_{P_{1}}\left(F_{1}\right)=F_{3}$, and $\phi_{P_{2}} \phi_{P_{1}}$ must be a counterclockwise rotation of 120° as a composition of rotations. Since $\phi_{X}^{2}\left(F_{1}\right)=F_{3}$ we have $\phi_{X}^{2}=\phi_{P_{2}} \phi_{P_{1}}$, as both are rotations by the same angle carrying F_{1} to F_{3}. Thus X is fixed by $\phi_{P_{2}} \phi_{P_{1}}$. Putting $X^{\prime}=\phi_{P_{1}}(X)$, we observe that $\triangle P_{1} X X^{\prime}$ is equilateral; similarly $\triangle P_{2} X^{\prime} X$ is equilateral. Hence $\phi_{X}^{2}\left(P_{2}\right)=P_{1}$.

Let Π be a symmetric patch. Since there must be a pentagonal face on the boundary and all sides have the same length, we may assume without loss of generality that the first pentagon P_{1} is centered on the line $F_{1} T_{1}$. Applying Lemma 1, the placement of P_{1} uniquely determines the location of the second pentagonal face, P_{2}. The point X shown in Fig. 2 is the unique point such that $\phi_{X}^{2}\left(F_{1}\right)=F_{3}$. Moreover, $\phi_{X}^{-2}\left(F_{1} T_{1}\right)=T_{2} T_{3}$. Thus if P_{1} is placed on the side of the boundary between F_{1} and T_{1}, then P_{2} will lie on the side between T_{2} and T_{3} (Fig. 3).

If Π is a near-symmetric patch with side-parameters $[n, n+1, n+1, n+1]$, there are three ways in which Π may be traced in Λ. We must consider whether the $F_{1} T_{1}$ side of the drawing is the n-side, an $(n+1)$-side adjacent to the n-side, or the other $(n+1)$-side, as we assume that P_{1} will always be on $F_{1} T_{1}$. In the case where $F_{1} T_{1}$ is the n-side, we can quickly determine via Lemma 1 that placing P_{1} on $F_{1} T_{1}$ requires that P_{2} be outside the patch Π; this is shown in Fig. 4, where $F_{1}^{\prime} T_{1}^{\prime}=$ $\phi_{X}^{-2}\left(F_{1} T_{1}\right)$.

Fig. 3 The patch from Fig. 2 with sectors removed

Fig. 4 A pentagon cannot lie on the n-side of a $[n, n+1, n+1, n+1]$-patch

Counting patches with exactly 2 pentagonal faces
To count the number of symmetric patches with side parameters $[n, n, n, n]$, we consider the embedding described in the previous section. There are $n+1$ hexagonal faces on $F_{1} T_{1}$ which are all valid locations for P_{1}. However, because all sides of this patch have length n, a pentagon on $F_{1} T_{1}$ at distance m from F_{1} represents the same patch as one with a pentagon on $F_{1} T_{1}$ at distance m from T_{1} via a reflection. Thus, we only count half of the positions for placement of P_{1}, and see that the total number of patches with side parameters $[n, n, n, n]$ is $\left\lceil\frac{n+1}{2}\right\rceil$.

The near-symmetric case is a little trickier. As seen in the previous section, there are no patches with side parameters $[n, n+1, n+1, n+1]$ with a pentagon on the side of length n. Now consider a patch Π with the same side parameters and a pentagon on an $(n+1)$-side adjacent to the n-side. We can draw Π in Λ by letting $F_{1} T_{1}$ be the side with the pentagon and $T_{1} T_{2}$ the side of length n. By Lemma 1, we see that if P_{1} is distance m from F_{1}, then P_{2} is distance $m+1$ from T_{2}. More importantly, P_{2} is on the

Fig. 5 A placement of P_{1} on a $(n+1)$-side adjacent to an n-side

Fig. $6 \quad P_{1}$ may be placed at any hexagon center at distance $0<m \leq\left\lceil\frac{n}{2}\right\rceil$ from F_{1} on $F_{1} T_{1}$

boundary on the other $(n+1)$-side that is adjacent to the n-side. Because the side $F_{1} T_{1}$ can be mapped to $T_{2} T_{3}$ via a graph isomorphism, a patch with a pentagon distance m from F_{1} is isomorphic to a patch with a pentagon distance m from T_{3}. Thus, we only count the patches where P_{2} is distance at most $\left\lceil\frac{n-1}{2}\right\rceil$ from F_{1}; there are $\left\lceil\frac{n+1}{2}\right\rceil$ such patches; see Fig. 5.

Now consider a patch with the same side parameters [$n, n+1, n+1, n+1$] but this time with a pentagon on the $(n+1)$-side that is not adjacent to the n-side. We again trace the boundary of the patch in Λ by letting $F_{1} T_{1}$ be the side with the pentagon and $T_{2} T_{3}$ the n-side. In this scenario, let $F_{1}^{\prime} T_{1}^{\prime}=\phi_{X}^{-2}\left(F_{1} T_{1}\right)$ as shown in Fig. 6. If P_{1} is placed on $F_{1} T_{1}$, then P_{2} will lie on $F_{1}^{\prime} T_{1}^{\prime}$. However, since $F_{1} T_{1}$ can be mapped to $T_{1} F_{1}$ via a graph isomorphism, we only consider placing P_{1} distance at most $\left\lceil\frac{n}{2}\right\rceil$ from F_{1}. Finally, we note that if P_{1} is placed on F_{1}, then the pentagon is on a corner and thus also on an $(n+1)$-side that is adjacent to the n-side; this patch was computed in the
previous case. Thus, there are a total of $\left\lceil\frac{n}{2}\right\rceil$ more patches to count from this case that were not previously counted; see Fig. 6. Adding up the number of patches from both of these cases gives a total of $\left\lceil\frac{n+1}{2}\right\rceil+\left\lceil\frac{n}{2}\right\rceil=n+1$ near-symmetric patches.

We summarize these results in the following proposition.
Proposition 1 The number of non-isomorphic symmetric patches with side parameters $[n, n, n, n]$ and at least one pentagon on the boundary is $\left\lceil\frac{n+1}{2}\right\rceil$. The number of non-isomorphic near-symmetric patches with side parameters $[n, n+1, n+1, n+1]$ and at least one pentagon on the boundary is $n+1$.

3 Patches with 3 pentagonal faces

Drawing patches in Λ
Drawing a 2-pentagon symmetric or near-symmetric fullerene patch in Λ is straightforward compared to drawing a 3-pentagon patch; in the former, the placement of the second pentagonal face is wholly determined by the placement of the first. However, in the latter case there is an additional degree of freedom to the placement of the pentagonal faces. We begin similarly, by tracing the boundary of a patch Π in the hexagonal tessellation Λ. Beginning with a break edge, we trace the boundary back to the same break edge; the initial face is labelled F_{1}, the next two faces incident with break edges are T_{1} and T_{2}, and the terminal face is F_{4}; refer to Fig. 7. We will again determine the locations of the pentagonal faces by assuming P_{1} to lie on $F_{1} T_{1}$. Let the first pentagonal face P_{1} be distance m from F_{1} on the $F_{1} T_{1}$ side, and let $F_{2}=\phi_{P_{1}}\left(F_{1}\right)$. We now can apply Lemma 1 to F_{2} and F_{4} to determine X such that $\phi_{X}^{2}\left(F_{2}\right)=F_{4}$. We must then be careful to place P_{2} so that both P_{2} and $P_{3}=\phi_{X}^{-2}\left(P_{2}\right)$ are interior to Π. The following construction determines the possible locations for P_{2}, in both the symmetric and near-symmetric cases.

Let k be the line through T_{2} and F_{4}, and let ℓ be the line through T_{1} and T_{2}. Define $k^{\prime}=\phi_{X}^{2}(k), \ell^{\prime}=\phi_{X}^{2}(\ell)$, and $Y=\phi_{F_{2}}(X)$; again refer to Fig. 7. Construct a circle \mathcal{C} with center Y and radius $X Y$. Finally, let R_{1} be the intersection of ℓ and k^{\prime}, R_{2} and R_{3} respectively the intersections of \mathcal{C} with ℓ and ℓ^{\prime} both on the same side of k^{\prime} as X, and R_{4} the intersection of k^{\prime} and ℓ^{\prime}. We denote by \mathcal{R} the region enclosed by line segment $R_{1} R_{2}$, arc $R_{2} X R_{3}$, and line segments $R_{3} R_{4}$ and $R_{4} R_{1}$, as shown in Fig. 7. While the location of P_{2} is as yet unfixed, we consider $F_{3}=\phi_{P_{2}}\left(F_{3}\right)$ and P_{3} the unique point such that $\phi_{P_{3}}\left(F_{3}\right)=F_{4}$. The following two lemmas show that the face centers in \mathcal{R}, excluding X, are precisely the possible locations of P_{2}.

Lemma 2 If P_{2} is not on the same side of $R_{1} R_{2}, R_{3} R_{4}$, and $R_{4} R_{1}$ as X, then either P_{2} or P_{3} is outside the boundary of Π.

Proof Since $k^{\prime}=\phi_{X}^{2}(k), \ell^{\prime}=\phi_{X}^{2}(\ell)$, and $P_{2}=\phi_{X}^{2}\left(P_{3}\right)$, the result is immediate.
Lemma 3 The triangles $\triangle F_{2} P_{2} F_{3}$ and $\triangle F_{3} P_{3} F_{4}$ have nonintersecting interiors if and only if P_{2} is inside \mathcal{C}.

Fig. 7 Construction of the region \mathcal{R} in a near-symmetric patch with $n=7$, thus side parameters $[8,7,8]$, and $m=4 ; P_{2}$ is included as an arbitrarily-chosen face center in \mathcal{R}

Proof Consider a circle \mathcal{C}^{\prime} centered at X of radius $X Y$; observe that $\phi_{F_{2}}\left(\mathcal{C}^{\prime}\right)=\mathcal{C}$. Since $F_{3}=\phi_{F_{2}}^{-1}\left(P_{2}\right), F_{3}$ is external to \mathcal{C}^{\prime} precisely when P_{2} is external to \mathcal{C}. But whenever F_{3} is external to $\mathcal{C}^{\prime}, \angle F_{4} F_{3} F_{2}$ is less than $\angle F_{2} X F_{4}=120^{\circ}$, since they subtend the same chord $F_{2} F_{4}$ of the circle \mathcal{C}^{\prime} centered at X. But then $\angle P_{3} F_{3} P_{2}$ is negative (since all angles are measured counterclockwise), and hence $\triangle F_{2} P_{2} F_{3}$, and $\triangle F_{3} P_{3} F_{4}$ have intersecting interiors.

If X falls upon a face center and P_{2} is placed at X, then P_{3} would also be at X. The deletion of the two sectors originating in P_{2} and P_{3} would result in a quadrilateral face, rather than two pentagonal faces; obviously this is not permitted. With this fact and the two preceding lemmas, P_{2} can be located at any face center in \mathcal{R} other than X.

However, while all these face centers are feasible, counting these face centers would double-count certain patches. Specifically, if both P_{2} and P_{3} lie in \mathcal{R}, then that patch would be counted twice. Hence we will construct a new region \mathcal{R}^{\prime} contained in \mathcal{R} which avoids this problem without undercounting.

Let R_{2}^{\prime} be the point on $R_{1} R_{2}$ such that $X R_{2}^{\prime}$ is perpendicular to $R_{1} R_{2}$; similarly define R_{3}^{\prime} on $R_{3} R_{4}$ so that $X R_{3}^{\prime}$ is perpendicular to $R_{3} R_{4}$. Then $\angle R_{2}^{\prime} X R_{3}^{\prime}=120^{\circ}$. Thus if a face center in the pentagonal region $R_{1} R_{2}^{\prime} X R_{3}^{\prime} R_{4}$ has its rotation by ϕ_{X}^{2} also in $R_{1} R_{2}^{\prime} X R_{3}^{\prime} R_{4}$, it must lie along $X R_{2}^{\prime}$. Thus we define \mathcal{R}^{\prime} to be the pentagonal region $R_{1} R_{2}^{\prime} X R_{3}^{\prime} R_{4}$ less the boundary segment $X R_{2}^{\prime}$ where neither X nor R_{2}^{\prime} is in \mathcal{R}^{\prime}.

Counting symmetric patches with exactly 3 pentagonal faces
To count all $[n, n, n]$ patches, we begin by counting all $[n, n, n]$ patches with P_{1} distance m from F_{1}. This is simply the number of faces centered in region \mathcal{R}^{\prime}; for clarity, a face is in \mathcal{R}^{\prime} if its center is in \mathcal{R}^{\prime}. We place P_{1} at a distance of m from F_{1} where $n / 2 \leq m \leq n$. If P_{1} is distance $m<n / 2$ from F_{1}, then P_{1} is distance $(n-m)>n / 2$

Fig. 8 The counting region \mathcal{R}^{\prime} in a near-symmetric patch with $n=7$, thus side parameters $[8,7,8]$ and $m=4$

Fig. 9 The counting region \mathcal{R}^{\prime} in a symmetric patch with $n=8$, thus side parameters $[8,8,8]$, and $m=5$
from T_{1}, and via a graph isomorphism is counted in the other configuration. The first of the following lemmas considers P_{1} neither at the midpoint of $F_{1} T_{1}$ nor at T_{1}.

Lemma 4 Let m and n be fixed positive integers with $n / 2<m<n$. Then the number of non-isomorphic patches that have side parameters $[n, n, n]$ and a pentagon distance m from a corner is

$$
h(n, m)= \begin{cases}\frac{1}{6}\left(n^{2}+2 m n+3 n-2 m^{2}\right) & \text { if } m+n \equiv 0 \quad(\bmod 3) \\ \frac{1}{6}\left(n^{2}+2 m n+3 n-2 m^{2}+2\right) & \text { else. }\end{cases}
$$

Proof To prove this result, we need to count the number of faces in region \mathcal{R}^{\prime}; for purpose of illustration, Fig. 9 may be consulted. First notice that the length of $R_{4} R_{1}$
is m and both R_{4} and R_{1} are in \mathcal{R}^{\prime}, so the number of faces on $R_{4} R_{1}$ is $m+1$. Also, notice that the length of $R_{1} R_{2}^{\prime}$ (and thus of $R_{3}^{\prime} R_{4}$) is ($n-m$)/2 with R_{1} (respectively R_{4}) on the center of a face and R_{2}^{\prime} (respectively R_{3}^{\prime}) on the center of face if and only if $(n-m) / 2$ is an integer.

To proceed, we count the number of faces in each row starting at the row on $R_{4} R_{1}$. Each subsequent row has exactly one more face until the row just prior to or containing R_{2}^{\prime} and R_{3}^{\prime}. After this, the length of each row decreases by 3 until we reach the final row (prior to that row containing X) which has 0,1 , or 2 faces in it. If $(n-m) / 2$ is an integer, the total number of faces in \mathcal{R}^{\prime} is

$$
\sum_{k=1}^{(n-m) / 2}(m+k)+\sum_{k=0}^{\lfloor(m+n) / 6\rfloor}\left(m+\frac{n-m}{2}-3 k\right) .
$$

The first sum counts all faces in the rows strictly before the row containing R_{2}^{\prime}, and the second sum counts all faces in the rows at R_{2}^{\prime} or after it. The upper index of the second sum is $\lfloor(m+n) / 6\rfloor$ because the summands are decreasing until $m+\frac{n-m}{2}-3 k$ equals 0,1 , or 2 . Solving for k gives the desired upper index.

If $(n-m) / 2$ is not an integer, then the total number of faces in \mathcal{R}^{\prime} is

$$
\sum_{k=1}^{(n-m+1) / 2}(m+k)+\sum_{k=0}^{\lfloor(m+n-3) / 6\rfloor}\left(m-2+\frac{n-m+1}{2}-3 k\right) .
$$

The first sum again counts all faces in the rows strictly before the row containing R_{2}^{\prime}. Notice the row directly preceding R_{2}^{\prime} has two fewer faces than the row after it. Each subsequent row has three fewer faces which accounts for the the second sum.

These sums can be evaluated by considering the the parity of $n-m$ and the remainder of $n+m$ when dividing by 6 . If n is even and $(n+m) / 6$ is an integer, we see that the number of faces is

$$
\sum_{k=1}^{(n-m) / 2}(m+k)+\sum_{k=0}^{(m+n) / 6}\left(m+\frac{n-m}{2}-3 k\right)
$$

which simplifies to

$$
\frac{1}{6}\left(n^{2}+2 m n+3 n-2 m^{2}\right)
$$

The other cases can be evaluated similarly to get the closed form stated in the lemma.

We now consider a $[n, n, n]$ patch with P_{1} distance exactly $m=n / 2$ from a corner, where n is even. This configuration leads to additional double-counting when enumerating patches by placement of P_{2} within \mathcal{R}^{\prime}, as P_{1} is the midpoint of the side of Π opposite T_{2}. Thus if P_{2} and P_{2}^{\prime} are possible positions for the second pentagonal face, with respective third pentagonal faces at P_{3} and P_{3}^{\prime}, we must be careful that we do not count both configurations when P_{3} and P_{3}^{\prime} are symmetric in Λ with respect to the reflection through $T_{2} X$.

This can occur in exactly two ways; for the sake of explaining these cases, we let R_{5} be the midpoint of $R_{4} R_{1}$ and note that $X R_{5}$ bisects \mathcal{R}^{\prime}. The first case we must consider occurs when P_{2} is in $\triangle X R_{4} R_{5}$. If P_{2}^{\prime} is the reflection of P_{2} through $R_{4} X$, $P_{3}=\phi_{X}^{-2}\left(P_{2}\right)$, and $P_{3}^{\prime}=\phi_{X}^{-2}\left(P_{2}^{\prime}\right)$, then it is trivial to see that P_{3}^{\prime} is the reflection of P_{3} through $T_{2} X$; we must not count both the positions of P_{2} and P_{2}^{\prime} as unique. On the other hand, suppose P_{2} is in $\triangle X R_{5} R_{1}$ but not on $X R_{5}$. Then if $P_{3}=\phi_{X}^{-2}\left(P_{2}\right)$ and P_{3}^{\prime} is the reflection of P_{3} through $T_{2} X$, then P_{3}^{\prime} is in $\triangle X R_{1} R_{2}^{\prime}$ inside \mathcal{R}^{\prime}; we must not count both the positions of P_{2} and P_{3}^{\prime} as unique. So the face centers we must consider as all possible positions of P_{2} with no double-counting are precisely those in the equilateral triangle $\triangle R_{1} X R_{4}$, not including X. There are $\frac{n}{2}+1$ faces on $R_{1} R_{4}$; each row of faces in $\triangle R_{1} X R_{4}$ distance k from $R_{1} R_{4}$ has $\frac{n}{2}+1-k$ faces with the farthest row being distance $\frac{n}{2}-1$ from $R_{1} R_{4}$ (since X isn't included). Thus, the total number of faces in $\triangle R_{1} X R_{4}$ is

$$
\sum_{k=0}^{\frac{n}{2}-1} \frac{n}{2}+1-k=\frac{n(n+6)}{8}
$$

The following lemma summarizes this result.
Lemma 5 Let n be a fixed even integer. Then the number of non-isomorphic patches that have side parameters $[n, n, n]$ and a pentagon distance $n / 2$ from a corner is

$$
h(n, n / 2)=\frac{n(n+6)}{8}
$$

So far, we have found the number of non-isomorphic symmetric patches having a fixed pentagon P_{1} distance m from a corner with $n / 2 \leq m<n$. We now explore the case where $m=n$. In this case, $R_{1}=R_{2}^{\prime}$ and $R_{4}=R_{3}^{\prime}$, so the region \mathcal{R}^{\prime} is simply the triangle $X R_{4} R_{1}$ (not including the line segment $R_{1} X$ and its endpoints). This configuration will lead to double-counting when enumerating patches by placements of P_{2} in \mathcal{R}^{\prime}. Again, for notational purposes, we let R_{5} be the midpoint of $R_{1} R_{4}$ and let $R_{5}^{\prime}=\phi_{X}^{-2}\left(R_{5}\right)$, which is the midpoint of $T_{2} F_{4}$. Also, let P_{2} and P_{2}^{\prime} be possible positions for the second pentagonal face in \mathcal{R}^{\prime} and P_{3} and P_{3}^{\prime} their respective positions for the third pentagonal face. We must not count both positions P_{2} and P_{2}^{\prime} when P_{3} and P_{3}^{\prime} are symmetric about $R_{5}^{\prime} X$. However, P_{3} and P_{3}^{\prime} being reflections about $R_{5}^{\prime} X$ is the same as P_{2} and P_{2}^{\prime} being reflections about $R_{5} X$; thus, the region in \mathcal{R}^{\prime} that avoids double counting is the triangle $\triangle R_{5} X R_{4}$ not including X. The following lemma counts the number of faces in this region.

Lemma 6 Letn be a fixed positive integer. Then the number of non-isomorphic patches that have side parameters $[n, n, n]$ and a pentagon on a corner is

$$
h(n, n)=\left\{\begin{array}{lll}
\frac{1}{12}\left(n^{2}+6 n\right) & \text { if } n \equiv 0 & (\bmod 6) \\
\frac{1}{12}\left(n^{2}+6 n+5\right) & \text { if } n \equiv 1,5 & (\bmod 6) \\
\frac{1}{12}\left(n^{2}+6 n+8\right) & \text { if } n \equiv 2,4 & (\bmod 6) \\
\frac{1}{12}\left(n^{2}+6 n-3\right) & \text { if } n \equiv 3 & (\bmod 6)
\end{array}\right.
$$

Proof If n is even, the number of faces on $R_{4} R_{5}$ is $n / 2+1$. The subsequent rows distance d from $R_{4} R_{5}$ have

$$
\frac{n}{2}+1-\left\lceil\frac{3 d}{2}\right\rceil
$$

faces with the farthest row distance $\lfloor(n+2) / 3\rfloor$, since X is centered on a face only when n is a multiple of 3 . Thus, if n is even, the total number of faces in $\triangle R_{5} X R_{4}$ not including X is

$$
\sum_{d=0}^{\lfloor(n+2) / 3\rfloor} \frac{n}{2}+1-\left\lceil\frac{3 d}{2}\right\rceil .
$$

If n is odd, the number of faces on $R_{4} R_{5}$ is $(n+1) / 2$. The subsequent rows distance d from $R_{4} R_{5}$ have

$$
\frac{n+1}{2}-\left\lfloor\frac{3 d}{2}\right\rfloor
$$

faces with the farthest row distance $\lfloor(n+2) / 3\rfloor$. Thus, if n is odd, the total number of faces in $\triangle R_{5} X R_{4}$ not including X is

$$
\sum_{d=0}^{\lfloor(n+2) / 3\rfloor} \frac{n+1}{2}-\left\lfloor\frac{3 d}{2}\right\rfloor .
$$

The cases above show that the computations will differ based on the remainder of $n / 6$. We examine the case where n is congruent to $1 \bmod 6$ in detail, and note that the other cases are similar. In this case, we write $n=6 q+1$ and see that the upper index on the sum is $2 q$. The desired sum becomes

$$
\sum_{d=0}^{2 q}\left(3 q+1-\left\lfloor\frac{3 d}{2}\right\rfloor\right)=(3 q+1)(2 q+1)-\sum_{d=0}^{2 q}\left\lfloor\frac{3 d}{2}\right\rfloor
$$

The final sum can be evaluated by noting that

$$
\sum_{d=0}^{2 q}\left\lfloor\frac{3 d}{2}\right\rfloor=\sum_{k=1}^{3 q} k-\sum_{k=1}^{q}(3 k-1) .
$$

Thus the total number of faces in $\triangle R_{5} X R_{4}$ not including X is

$$
(3 q+1)(2 q+1)-\frac{3 q(3 q+1)}{2}+\frac{3 q(q+1)}{2}-q=3 q^{2}+4 q+1 .
$$

By rewriting q in terms of n, we get the desired result.

We now have a formula for the number of symmetric patches with a pentagon at fixed distance m from a corner. However, summing over all m overcounts the number of nonisomorphic patches because more than one pentagon may lie on the boundary. For instance, if m is fixed and the second pentagon P_{2} is placed on the line $R_{1} R_{4}, P_{3}$ is forced to be on the boundary $F_{4} T_{2}$, and then P_{3} is some distance m^{\prime} from a corner. Hence its patch would be counted when P_{1} is distance m^{\prime} from F_{1}.

The next lemmas consider the case where either P_{2} or P_{3} is also on the boundary of Π and nearer to a corner than P_{1} is to T_{1}. We will exclude such cases in the overall count.

Lemma 7 Let n and m be fixed positive integers with $n / 2<m<n$. Then there are $2 n-2 m-1$ patches having side parameters $[n, n, n]$, a pentagon distance m from a corner, and another pentagon on the boundary distance less than $n-m$ to a corner.

Proof Let P_{1} be distance m from F_{1}. Then R_{1} is distance m from T_{1}, making $R_{1} R_{2}^{\prime}$ nearer to the corner T_{2} than to T_{1}. If P_{2} is on the boundary of Π, it must be on $R_{1} R_{2}^{\prime}$; if also the distance from P_{2} to T_{2} is less than $n-m$, then P_{2} cannot be R_{1}.

On the other hand, if P_{3} is on the boundary of Π, then either P_{3} is on $R_{2}^{\prime} T_{2}$ or on $T_{2} F_{4}$. If P_{3} is on $R_{2}^{\prime} T_{2}$, then this distance from P_{3} to T_{2} is less than $n-m$; this occurs only when P_{2} is on $R_{3}^{\prime} R_{4}$. If instead P_{3} is on $T_{2} F_{4}$ and distance less than $n-m$ from T_{2}, then P_{2} must be on $R_{4} R_{1}$ and distance less than $n-m$ from R_{4}. So we can count exactly those positions of P_{2} along the boundary of \mathcal{R}^{\prime} which we have just described. The line segments $R_{3}^{\prime} R_{4}$ and $R_{1} R_{2}^{\prime}$ excluding R_{1} and R_{2}^{\prime} give $(n-m)$ positions for P_{2}, and the portion of the segment $R_{4} R_{1}$ distance less than $n-m$ to R_{4} but not at R_{4} gives $(n-m-1)$ positions. Summing these, the result holds.

Lemma 8 Let n be a fixed even integer. Then there are $n / 2$ patches having side parameters $[n, n, n]$, a pentagon distance $n / 2$ from a corner, and another pentagon on the boundary distance less than $n / 2$ to a corner.

Proof The pentagon distance $n / 2$ from a corner will be P_{1}. Then as before, for another pentagon to be on the boundary, P_{2} must be on $R_{3}^{\prime} R_{4}$ (including endpoints), $R_{1} R_{2}^{\prime}$ (not including endpoints), or on the closest $n-m-1$ faces to R_{4} on $R_{4} R_{1}$ not including R_{1}. Accounting for our previous isomorphisms, P_{2} must be on $R_{4} R_{1}$ not including R_{1}. There are $n / 2$ such faces.

Combining these lemmas yields the following theorem.
Theorem 1 The number of non-isomorphic patches with side parameters $[n, n, n]$ and a pentagon on the boundary is

$$
\left\{\begin{array}{lll}
\frac{1}{18}\left(2 n^{3}+24 n-18\right) & \text { if } n \equiv 0 & (\bmod 6) \\
\frac{1}{18}\left(2 n^{3}+15 n+1\right) & \text { if } n \equiv 1 & (\bmod 6) \\
\frac{1}{18}\left(2 n^{3}+24 n-10\right) & \text { if } n \equiv 2 & (\bmod 6) \\
\frac{1}{18}\left(2 n^{3}+15 n-9\right) & \text { if } n \equiv 3 & (\bmod 6) \\
\frac{1}{18}\left(2 n^{3}+24 n-8\right) & \text { if } n \equiv 4 & (\bmod 6) \\
\frac{1}{18}\left(2 n^{3}+15 n-1\right) & \text { if } n \equiv 5 & (\bmod 6)
\end{array}\right.
$$

Proof We first count the number of non-isomorphic patches with a pentagon on the corner; then we count the number of non-isomorphic patches with a pentagon distance m from a corner with $n / 2<m<n$ and subtract the number of patches that are counted twice. Finally, if n is even, we count the number of patches with a pentagon distance $n / 2$ from a corner and subtract the number of patches that are counted twice. Thus, if n is even, we evaluate the sum

$$
h(n, n)+\left(\sum_{m=n / 2+1}^{n-1}(h(n, m)-(2 n-2 m-1))\right)+h(n, n / 2)-n / 2
$$

and the total number if n is odd is

$$
h(n, n)+\sum_{m=(n+1) / 2}^{n-1}(h(n, m)-(2 n-2 m-1)) .
$$

The simplification of these sums requires knowing the remainder of n when dividing by 6 . We examine the case where $n=6 q+2$ in detail and note that the other cases are similar. Notice the sum

$$
\sum_{m=n / 2+1}^{n-1}(h(n, m)-(2 n-2 m-1))
$$

has $3 q$ terms. Of these terms, q of them come from an index m which is congruent to 1 $\bmod 3$ (thus ensuring $n+m$ is congruent to $0 \bmod 3$). Using the formula in Lemma 4, the sum can be rewritten as

$$
\sum_{m=n / 2+1}^{n-1}\left(\frac{1}{6}\left(n^{2}+2 n m+3 n-2 m^{2}+2\right)-(2 n-2 m-1)\right)-\frac{1}{3} q
$$

or more simply

$$
\frac{1}{72}\left(8 n^{3}-15 n^{2}+42 n-88\right)
$$

Thus, using Lemmas 5 and 6, the total number of patches is given by

$$
\frac{1}{12}\left(n^{2}+6 n+8\right)+\frac{1}{72}\left(8 n^{3}-15 n^{2}+42 n-88\right)+\frac{n(n+6)}{8}-\frac{n}{2}
$$

which can be simplified to the desired result.
These results agree with the numbers found by Brinkmann and Van Cleemput in their recursive algorithm in [3].

Counting near-symmetric patches with exactly 3 pentagonal faces

The construction of the region \mathcal{R}^{\prime} in the near-symmetric case is exactly the same as in the symmetric case; in fact, Fig. 7 depicted a near-symmetric patch, and Fig. 8 depicted its counting region \mathcal{R}^{\prime}. However, determining whether $F_{1} T_{1}$ or $T_{1} T_{2}$ is on the shorter side or a longer side has an effect on the enumeration of positions for P_{2}. We first consider all near-symmetric patches that have a pentagon on a longer side. For near-symmetric patches with side parameters $[n, n+1, n+1]$ and a pentagon on a side of length $n+1$, we draw the patch such that $T_{1} T_{2}$ has length n. We again fix P_{1} at distance m from F_{1}, and as long as $m \neq 0$, the counting process is the same.

Lemma 9 Let n and m be fixed positive integers with $1 \leq m \leq n+1$. Then the number of non-isomorphic patches that have side parameters $[n, n+1, n+1]$ with a pentagon on a side of length $n+1$ distance m from the $(n+1, n+1)$-corner is

$$
f(n, m)= \begin{cases}\frac{1}{6}\left(n^{2}+2 m n+7 n-2 m^{2}-2 m+4\right) & \text { if } n+m-1 \equiv 0 \quad(\bmod 3) \\ \frac{1}{6}\left(n^{2}+2 m n+7 n-2 m^{2}-2 m+6\right) & \text { else. }\end{cases}
$$

Proof After fixing P_{1}, we need to count the number of possible positions for P_{2} which is equivalent to the number of faces in region \mathcal{R}^{\prime}. Notice that the length of $R_{4} R_{1}$ is $m+1$ and both R_{4} and R_{1} are in \mathcal{R}^{\prime}, so the number of faces on $R_{4} R_{1}$ is $m+2$. Also, notice the length of $R_{1} R_{2}^{\prime}$ is $(n-m) / 2$ with R_{1} on the center of a face if and only if $(n-m) / 2$ is an integer. This proof is almost identical to the proof of Lemma 4, so we omit some of the details here. If $(n-m) / 2$ is an integer, the total number of faces in \mathcal{R}^{\prime} is

$$
\sum_{k=1}^{(n-m) / 2}(m+1+k)+\sum_{k=0}^{\lfloor(m+n+2) / 6\rfloor}\left(m+1+\frac{n-m}{2}-3 k\right),
$$

and if $(n-m)$ is odd, the total number of faces in \mathcal{R}^{\prime} is

$$
\sum_{k=1}^{(n-m+1) / 2}(m+1+k)+\sum_{k=0}^{\lfloor(m+n+3) / 6\rfloor}\left(m-1+\frac{n-m+1}{2}-3 k\right)
$$

When $m=0$, which occurs when $P_{1}=F_{1}$, it is not the case that placing P_{2} at each face center in \mathcal{R}^{\prime} results in a non-isomorphic patch. Since the patch Π has three sides and three corners, we can think of P_{1} as the opposite corner to the side $T_{1} T_{2}$. If P_{2} and P_{2}^{\prime} are possible positions for the second pentagonal face, with respective third pentagonal faces P_{3} and P_{3}^{\prime}, we must ensure that we do not count both configurations when P_{3} and P_{2}^{\prime} are symmetric with respect to reflection through $R_{2}^{\prime} X$.

Again we denote by R_{5} the midpoint of $R_{1} R_{4}$. Suppose P_{2} is in the quadrilateral $R_{3}^{\prime} R_{4} R_{5} X$, excluding X and $P_{3}=\phi_{X}^{-2}\left(P_{2}\right)$. Then the reflection of P_{3} through $X R_{2}^{\prime}$ is in the quadrilateral $R_{1} R_{2}^{\prime} X R_{5}$. Hence we count only those face centers in one of those quadrilaterals as possible locations for P_{2}.

Lemma 10 Let n be a fixed positive integer. Then the number of non-isomorphic patches that have side parameters $[n, n+1, n+1]$ and a pentagon on the $(n+1, n+1)$ corner is

$$
f(n, 0)=\left\{\begin{array}{lll}
\frac{1}{12}\left(n^{2}+10 n+12\right) & \text { if } n \equiv 0,2 & (\bmod 6) \\
\frac{1}{12}\left(n^{2}+10 n+1\right) & \text { if } n \equiv 1 & (\bmod 6) \\
\frac{1}{12}\left(n^{2}+10 n+9\right) & \text { if } n \equiv 3,5 & (\bmod 6) \\
\frac{1}{12}\left(n^{2}+10 n+4\right) & \text { if } n \equiv 4 & (\bmod 6)
\end{array}\right.
$$

Proof This proof is very similar to the proof of Lemma 6.
We count the number of faces centered in the quadrilateral $R_{1} R_{2}^{\prime} X R_{5}$, excluding X. The length of $R_{1} R_{2}^{\prime}$ is $n / 2$. Thus there are $n / 2+1$ faces on the row if n is even and $(n+1) / 2$ faces if n is odd.

If n is even, each subsequent row at distance d from $R_{1} R_{2}^{\prime}$ has

$$
\frac{n}{2}+2-\left\lceil\frac{3 d}{2}\right\rceil
$$

faces with the farthest row at distance $\lfloor(n+1) / 3\rfloor$. The reason for this is that X is centered on a face only when $n+2$ is divisible by 3 . Thus, if n is even, the total number of faces in quadrilateral $R_{1} R_{2}^{\prime} X R_{5}$ (excluding X) is

$$
\frac{n}{2}+1+\sum_{d=1}^{\lfloor(n+1) / 3\rfloor}\left(\frac{n}{2}+2-\left\lceil\frac{3 d}{2}\right\rceil\right)
$$

If n is odd, we have a similar scenario and see that the number of faces in $R_{1} R_{2}^{\prime} X R_{5}$ (excluding X) is

$$
\frac{n+1}{2}+\sum_{d=1}^{\lfloor(n+1) / 3\rfloor}\left(\frac{n+1}{2}+1-\left\lfloor\frac{3 d}{2}\right\rfloor\right) .
$$

These expressions can be algebraically simplified to the closed form above.
For near-symmetric patches with side parameters $[n, n+1, n+1]$ and a pentagon on the side of length n, we draw the patch with $F_{1} T_{1}$ of length n and both $T_{1} T_{2}$ and $T_{2} F_{4}$ of length $n+1$. For such patches, we only need to consider the pentagon P_{1} being distance m from F_{1} where $n / 2 \leq m \leq n$. If P_{1} is distance less than $n / 2$ from F_{1}, then it is at least $n / 2$ distance from T_{1}; such a patch would be counted in the other configuration. As the cases for $m=\frac{n}{2}$ and $m=n$ require extra care, we begin by excluding them.

Lemma 11 Let n and m be positive integers with $n / 2<m<n$. Then the number of non-isomorphic patches that have side parameters $[n, n+1, n+1]$ and a pentagon on the side of length n at distance m from a corner is

$$
g(n, m)=h(n, m)= \begin{cases}\frac{1}{6}\left(n^{2}+2 m n+3 n-2 m^{2}\right) & \text { if } n+m \equiv 0 \quad(\bmod 3) \\ \frac{1}{6}\left(n^{2}+2 m n+3 n-2 m^{2}+2\right) & \text { else. }\end{cases}
$$

Proof Note that $R_{1} R_{4}$ has length m and $R_{1} R_{2}^{\prime}$ has length $(n-m) / 2$. Thus, to count the face centers in \mathcal{R}^{\prime} we use the same technique as Lemma 4.

When there is a pentagon on the side of length n and distance exactly $n / 2$ from a corner, we use similar arguments as the symmetric case and get the following lemma extending the definition of g.

Lemma 12 Let n be a fixed even integer. Then the number of non-isomorphic patches that have side parameters $[n, n+1, n+1]$ and a pentagon on the side of length n at distance $n / 2$ from a corner is

$$
g(n, n / 2)=h(n, n / 2)=\frac{n(n+6)}{8}
$$

Each of these lemmas allows us to count the number of non-isomorphic nearsymmetric patches when a pentagon is in a fixed position on a particular side. However, some of these cases overlap; for instance, those cases with pentagons on two sides could be counted twice. Therefore, we need to consider all ways we could possibly be double-counting before finding the total. The next result counts those patches with one pentagon on each long side of the boundary, F_{1} in the $(n+1, n+1)$-corner, and the distance from P_{2} to F_{4} greater than P_{1} to F_{1}.

Lemma 13 Let n and m_{1} be fixed positive integers with $0 \leq m_{1} \leq n+1$. The number of non-isomorphic patches having side parameters $[n, n+1, n+1]$, a pentagon on a long side at distance m_{1} from the $(n+1, n+1)$-corner, and another pentagon on the other long side at distance $m_{2}>m_{1}$ from the $(n+1, n+1)$-corner is

$$
\begin{cases}1 & \text { if } m_{1}=0 \\ m_{1}+2 & \text { if } 0<m_{1}<n / 2, \text { and } \\ n-m_{1}+1 & \text { if } m_{1} \geq n / 2\end{cases}
$$

Proof We draw the patch as usual with P_{1} distance m_{1} from F_{1}. The other long side of the patch is $T_{2} F_{4}$ and P_{2} cannot be on that side. If P_{3} is on the long side and is distance $m_{2}>m_{1}$ from F_{4}, the P_{3} is less than $n+1-m_{1}$ from T_{2}. Since T_{2} maps to R_{4} in our 120 degree rotation about X, we see that P_{2} must be on $R_{4} R_{1}$ and be distance less than $n+1-m_{1}$ from R_{4}. There are exactly $m_{1}+2$ faces on $R_{1} R_{4}$.

If $m=0$, our acceptable region is the quadrilateral $R_{5} R_{1} R_{2}^{\prime} X$, and there is only 1 place for P_{2} on the line $R_{5} R_{1}$. If $m_{1}<n / 2$ and P_{2} is anywhere on $R_{4} R_{1}, P_{3}$ will be on the other long side at distance more than m_{1} from the $(n+1, n+1)$-corner. There are $m_{1}+2$ possible positions for P_{2}. On the other hand, if $m_{1} \geq n / 2$, then P_{2} can only be in the first $n-m_{1}+1$ positions along $R_{4} R_{1}$.

Now we consider double-counting patches with a pentagon on both a long side and short side.

Lemma 14 Let n be a fixed positive integer. The number of non-isomorphic patches having side parameters $[n, n+1, n+1]$, a pentagon on a long side, and a pentagon on a short side not including the short side's corners is $\left\lfloor n^{2} / 2\right\rfloor$.

Proof Consider fixing P_{1} at distance m from F_{1}. If $m=0$ and P_{2} is on $T_{1} T_{2}$ (the short side), then P_{2} is on $R_{1} R_{2}^{\prime}$ including R_{2}^{\prime} (which is in the allowable region in this case) but not including R_{1} which is on the corner T_{1}. Thus there are $\lfloor n / 2\rfloor$ positions for P_{2}.

If $0<m<n+1$, then P_{2} could be on all of $R_{1} R_{2}^{\prime}$ not including R_{2}^{\prime} (which is not in \mathcal{R}^{\prime}). There are $\lfloor(n-m) / 2\rfloor+1$ valid positions. However, P_{3} could also be on the short side $T_{1} T_{2}$, which occurs when P_{2} is on $R_{3}^{\prime} R_{4}$. In this case, P_{2} cannot be on R_{4} because then P_{3} would be on the corner T_{2}. Thus, there are $\lceil(n-m) / 2\rceil-1$ positions for P_{2} here for a total of $n-m$ places.

If $m=n+1$, neither P_{2} nor P_{3} can be on $T_{1} T_{2}$, so there are no patches to count in this case. Summing over all m yields a total of

$$
\left\lfloor\frac{n}{2}\right\rfloor+\sum_{m=1}^{n}(n-m)=\left\lfloor\frac{n^{2}}{2}\right\rfloor
$$

patches satisfying the given criteria.

The final theorem gives a formula for the total number of near-symmetric patches with at least one pentagon on the boundary. These results agree with the values found by the recursive algorithm in [3].

Theorem 2 The number of non-isomorphic patches with side parameters $[n, n+$ $1, n+1]$ and at least one pentagon on the boundary is

$$
\begin{cases}\frac{1}{6}\left(2 n^{3}+4 n^{2}+8 n\right) & \text { if } n \equiv 0,2 \quad(\bmod 6) \\ \frac{1}{6}\left(2 n^{3}+4 n^{2}+5 n+1\right) & \text { if } n \equiv 1 \quad(\bmod 6) \\ \frac{1}{6}\left(2 n^{3}+4 n^{2}+5 n+3\right) & \text { if } n \equiv 3,5 \quad(\bmod 6) \\ \frac{1}{6}\left(2 n^{3}+4 n^{2}+8 n-2\right) & \text { if } n \equiv 4 \quad(\bmod 6)\end{cases}
$$

Proof We start by counting all such patches with a pentagon on the $(n+1, n+1)$ corner. There are $f(n, 0)$ of these. We then count the patches with a pentagon on a side of length $n+1$ at distance m from the $(n+1, n+1)$ corner where $1 \leq m \leq n+1$; however, we must subtract the number of patches that have two pentagons on long sides that will be counted twice. We then add in all patches with a pentagon on the short side and subtract those that were previously counted if they also had a pentagon on the long side. Finally, we notice that some patches have a pentagon on all three sides, and we need to add those back in. This occurs exactly when there is a pentagon on the long side at distance m from the $(n+1, n+1)$-corner with $1 \leq m<n / 2$ and P_{2} is at R_{1}, equalling $\left\lfloor\frac{n}{2}\right\rfloor-1$ cases. Thus, the total number is

$$
\begin{aligned}
& f(n, 0)+\sum_{m=1}^{n+1} f(n, m)-\left(1+\sum_{m=1}^{\lfloor n / 2\rfloor-1}(m+2)+\sum_{m=\lfloor n / 2\rfloor}^{n+1}(n-m+1)\right) \\
& \quad+\sum_{\lfloor n / 2\rfloor+1}^{n-1} g(n, m)+(n-1 \quad \bmod 2) g(n, n / 2)-\left\lfloor\frac{n^{2}}{2}\right\rfloor+\left\lceil\frac{n}{2}\right\rceil-1
\end{aligned}
$$

Again, these sums require some care to simplify. Using similar techniques to those used previously, the stated result holds.

References

1. P. Bonsma, F. Breuer, Finding fullerene patches in polynomial time. in ISAAC 2009, vol 5878, LNCS, pp. 750-759 (2009)
2. G. Brinkmann, A.W.M. Dress, PentHex puzzles: A reliable and efficient top-down approach to fullerenestructure enumeration. Adv. Appl. Math. 21, 473-480 (1998)
3. G. Brinkmann, N. Van Cleemput, Classification and generation of nanocones. Discrete Appl. Math. 159, 1528-1539 (2011)
4. M. Deza, P.W. Fowler, V. Grishukin, Allowed boundary sequences for fused polycyclic patches and related algorithmic problems. J. Chem. Inf. Comput. Sci. 41, 300-308 (2011)
5. C. Graves, J. McLoud-Mann, Side lengths of pseudoconvex fullerene patches. Ars Math. Contemp. 5, 291-302 (2012)

[^0]: C. Graves (\boxtimes) • S. J. Graves

 The University of Texas at Tyler, Tyler, TX 75799, USA
 e-mail: cgraves@uttyler.edu
 S. J. Graves
 e-mail: sgraves@uttyler.edu

