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Abstract We establish an exact method for drawing fullerene patches in the hexagonal
tessellation of the plane. Using these embeddings, we then provide a closed form
equation for the total number of symmetric and near-symmetric fullerene patches, up
to isomorphism. The function depends only on parameters of the boundary code.
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1 Introduction

A fullerene is a trivalent 2-connected plane graph with all faces hexagonal or pen-
tagonal. A fullerene patch is a 2-connected plane graph with all faces hexagonal or
pentagonal except one external face; all vertices not incident with the external face
have degree three and those incident with the external face have degree two or three.
The cycle bounding the external face is the boundary of the patch. Thus the bound-
ary code is the sequence of degrees of vertices on the boundary in consecutive order,
up to cyclic permutation or inversion. For instance, a pair of adjacent pentagons has
boundary code 22232223, or equivalently (2223)2.

Our interest is in a particularly nice type of fullerene patch. A patch is pseudoconvex
if the boundary code does not contain consecutive 3’s. Consecutive 3’s on the bound-
ary can be envisioned as a turn on the boundary “away from” the interior of the patch.
An edge on the boundary incident with two 2-valent vertices is a break edge, and the
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path on the boundary of a pseudoconvex patch between two break edges is a side.
A pseudoconvex patch has boundary code 2(23)�1 2(23)�2 · · · 2(23)�k , and hence we
say it has k sides with lengths �1, �2, . . . , �k . Following the notation of [5], a pseudo-
convex patch with side lengths �1, �2, . . . , �s has side parameters [�1, �2, . . . , �s].
A pseudoconvex patch with all sides of equal length is symmetric; a near-symmetric
patch will have side parameters [n, n + 1, n + 1, . . . , n + 1] for some nonnegative
integer n. We will refer to a face incident with both an n-side and an n + 1-side as an
(n, n + 1)-corner, and we similarly define an (n + 1, n + 1)-corner.

Boundary codes of fullerene patches have been extensively studied, and there have
been many algorithms to determine if a specific boundary code is realizable as a patch
(see [1,2,4]). In [5], it was shown that symmetric and near-symmetric patches exist
for the following values of n and s:

• s = 5 and n ≥ 5,
• s = 4 and n ≥ 2,
• s = 3 and n ≥ 1,
• s = 2 and n ≥ 1 for symmetric patches,
• s = 2 and n ≥ 0 for near-symmetric patches,
• s = 1 and n ≥ 0, and
• s = 0 and n ≥ 0 for symmetric patches.

These symmetric and near-symmetric patches are specifically of interest in the
study of carbon nanocones, classified by Brinkmann and Van Cleemput [3]. In that
article, the authors show that nanocones are in bijective correspondence with the set
of symmetric and near-symmetric pseudoconvex fullerene patches, which they called
cone caps. Further, Brinkmann and Van Cleemput provided an algorithm for generating
all cone caps given the length of the shortest side. However, the algorithm is recursive
in nature and no closed form for the number of patches as a function of minimum side
length is provided via the algorithm.

This article is concerned with precisely that: to provide a constructive enumeration
of pseudoconvex patches in order to give closed forms for the number of symmetric and
near-symmetric patches. Unlike the algorithmic enumeration of [3], our construction
is not recursive, and provides an exact value for the number of such patches as a
function of the minimum side length n.

It suffices to determine the number of symmetric or near-symmetric patches with a
pentagonal face on the boundary. If a patch does not have a pentagon on its boundary,
it has some number of layers of hexagons before the first pentagonal face. Removing
these layers of hexagons results in a symmetric or near-symmetric patch with shorter
side lengths, as proven in [5]. We can then count all nonisomorphic patches on this
“shorter” boundary inductively.

To this end, we provide a canonical method of embedding fullerene patches in
the hexagonal tessellation of the plane, which we denote by Λ. Using this embed-
ding and the geometry it provides, we determine an exact formula for the number of
non-isomorphic symmetric and near-symmetric fullerene patches with two or three
pentagonal faces, at least one of which is on the boundary.

Intuitively, we introduce a single pentagonal defect in the hexagonal tessellation
Λ by identifying across a 60◦ sector with vertex at a face center. Carefully repeating
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Fig. 1 The boundary of
[5, 5, 5, 5] in Λ
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T3
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T1
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this process until twelve pentagonal faces are created produces a fullerene; we limit
ourselves to patches with at most three pentagonal faces. We make the following
definition for the purpose of easing notation.

Definition 1 We define φX to be a 60◦ counterclockwise rotation of the plane with
center at X . Note that if X is a face center in Λ, then φX is an automorphism of Λ.

If X is a face center and Y is the center of an adjacent hexagon, we produce a defect at
X by identifying vertices, faces, and edges across the sector between the rays XY and
φX (XY ). Hence the face with center X becomes a pentagon under the identification
and all other resulting faces remain hexagonal.

2 Patches with 2 pentagonal faces

Drawing the patch in Λ

A patch Π with exactly two pentagonal faces will have side parameters [n, n, n, n] if
it is symmetric and [n, n + 1, n + 1, n + 1] if it is near-symmetric. Beginning with
a break edge, we trace the boundary of Π in Λ. The boundary terminates with the
same break edge. We label important faces on the boundary by their centers: F1 is the
initial face, T1, T2, and T3 are the faces incident with the next three break edges in
succession, and F3 is the terminal face. See Fig. 1.

As we will identify F1 and F3 by the removal of two 60◦ sectors, we will (by
the following lemma) demonstrate that the placement of the first pentagonal face
uniquely determines the location of the second. Having determined the locations of
P1 and P2, the removed sectors then are first between the ray P1 F1 and P1 F2, where
F2 = φP2(F1), and second between the rays P2 F2 and P2 F3.
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Fig. 2 A particular placement
of P1 and P2
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Lemma 1 Given two distinct points F1 and F3 in a plane, let X be the unique point
such that φ2

X (F1) = F3. Then for any point P1, there is a unique point P2 such that

φP2φP1(F1) = F3.

Moreover, φ−2
X (P1) = P2.

Proof Suppose F1, F3, and P1 are given. Let F2 = φP1(F1), and let P2 be the unique
point such that φP2(F2) = F3. So then φP2φP1(F1) = F3, and φP2φP1 must be a
counterclockwise rotation of 120◦ as a composition of rotations. Since φ2

X (F1) = F3
we have φ2

X = φP2φP1 , as both are rotations by the same angle carrying F1 to F3. Thus
X is fixed by φP2φP1 . Putting X ′ = φP1(X), we observe that �P1 X X ′ is equilateral;
similarly �P2 X ′ X is equilateral. Hence φ2

X (P2) = P1.

Let Π be a symmetric patch. Since there must be a pentagonal face on the boundary
and all sides have the same length, we may assume without loss of generality that the
first pentagon P1 is centered on the line F1T1. Applying Lemma 1, the placement of P1
uniquely determines the location of the second pentagonal face, P2. The point X shown
in Fig. 2 is the unique point such that φ2

X (F1) = F3. Moreover, φ−2
X (F1T1) = T2T3.

Thus if P1 is placed on the side of the boundary between F1 and T1, then P2 will lie
on the side between T2 and T3 (Fig. 3).

If Π is a near-symmetric patch with side-parameters [n, n + 1, n + 1, n + 1],
there are three ways in which Π may be traced in Λ. We must consider whether
the F1T1 side of the drawing is the n-side, an (n + 1)-side adjacent to the n-side,
or the other (n + 1)-side, as we assume that P1 will always be on F1T1. In the case
where F1T1 is the n-side, we can quickly determine via Lemma 1 that placing P1 on
F1T1 requires that P2 be outside the patch Π ; this is shown in Fig. 4, where F ′

1T ′
1 =

φ−2
X (F1T1).
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Fig. 3 The patch from Fig. 2
with sectors removed
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Fig. 4 A pentagon cannot lie on
the n-side of a
[n, n + 1, n + 1, n + 1]-patch
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Counting patches with exactly 2 pentagonal faces

To count the number of symmetric patches with side parameters [n, n, n, n], we con-
sider the embedding described in the previous section. There are n + 1 hexagonal
faces on F1T1 which are all valid locations for P1. However, because all sides of this
patch have length n, a pentagon on F1T1 at distance m from F1 represents the same
patch as one with a pentagon on F1T1 at distance m from T1 via a reflection. Thus, we
only count half of the positions for placement of P1, and see that the total number of
patches with side parameters [n, n, n, n] is

⌈ n+1
2

⌉
.

The near-symmetric case is a little trickier. As seen in the previous section, there
are no patches with side parameters [n, n +1, n +1, n +1] with a pentagon on the side
of length n. Now consider a patch Π with the same side parameters and a pentagon
on an (n + 1)-side adjacent to the n-side. We can draw Π in Λ by letting F1T1 be the
side with the pentagon and T1T2 the side of length n. By Lemma 1, we see that if P1 is
distance m from F1, then P2 is distance m +1 from T2. More importantly, P2 is on the
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Fig. 5 A placement of P1 on a
(n + 1)-side adjacent to an
n-side
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Fig. 6 P1 may be placed at any
hexagon center at distance
0 < m ≤ ⌈ n

2
⌉
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boundary on the other (n+1)-side that is adjacent to the n-side. Because the side F1T1
can be mapped to T2T3 via a graph isomorphism, a patch with a pentagon distance m
from F1 is isomorphic to a patch with a pentagon distance m from T3. Thus, we only
count the patches where P2 is distance at most � n−1

2 � from F1; there are � n+1
2 � such

patches; see Fig. 5.
Now consider a patch with the same side parameters [n, n +1, n +1, n +1] but this

time with a pentagon on the (n + 1)-side that is not adjacent to the n-side. We again
trace the boundary of the patch in Λ by letting F1T1 be the side with the pentagon and
T2T3 the n-side. In this scenario, let F ′

1T ′
1 = φ−2

X (F1T1) as shown in Fig. 6. If P1 is
placed on F1T1, then P2 will lie on F ′

1T ′
1. However, since F1T1 can be mapped to T1 F1

via a graph isomorphism, we only consider placing P1 distance at most � n
2 � from F1.

Finally, we note that if P1 is placed on F1, then the pentagon is on a corner and thus
also on an (n + 1)-side that is adjacent to the n-side; this patch was computed in the
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previous case. Thus, there are a total of � n
2 � more patches to count from this case that

were not previously counted; see Fig. 6. Adding up the number of patches from both
of these cases gives a total of � n+1

2 � + � n
2 � = n + 1 near-symmetric patches.

We summarize these results in the following proposition.

Proposition 1 The number of non-isomorphic symmetric patches with side parame-
ters [n, n, n, n] and at least one pentagon on the boundary is

⌈ n+1
2

⌉
. The number of

non-isomorphic near-symmetric patches with side parameters [n, n + 1, n + 1, n + 1]
and at least one pentagon on the boundary is n + 1.

3 Patches with 3 pentagonal faces

Drawing patches in Λ

Drawing a 2-pentagon symmetric or near-symmetric fullerene patch in Λ is straight-
forward compared to drawing a 3-pentagon patch; in the former, the placement of the
second pentagonal face is wholly determined by the placement of the first. However,
in the latter case there is an additional degree of freedom to the placement of the
pentagonal faces. We begin similarly, by tracing the boundary of a patch Π in the
hexagonal tessellation Λ. Beginning with a break edge, we trace the boundary back
to the same break edge; the initial face is labelled F1, the next two faces incident with
break edges are T1 and T2, and the terminal face is F4; refer to Fig. 7. We will again
determine the locations of the pentagonal faces by assuming P1 to lie on F1T1. Let the
first pentagonal face P1 be distance m from F1 on the F1T1 side, and let F2 = φP1(F1).
We now can apply Lemma 1 to F2 and F4 to determine X such that φ2

X (F2) = F4.
We must then be careful to place P2 so that both P2 and P3 = φ−2

X (P2) are interior to
Π . The following construction determines the possible locations for P2, in both the
symmetric and near-symmetric cases.

Let k be the line through T2 and F4, and let � be the line through T1 and T2. Define
k′ = φ2

X (k), �′ = φ2
X (�), and Y = φF2(X); again refer to Fig. 7. Construct a circle C

with center Y and radius XY . Finally, let R1 be the intersection of � and k′, R2 and R3
respectively the intersections of C with � and �′ both on the same side of k′ as X , and
R4 the intersection of k′ and �′. We denote by R the region enclosed by line segment
R1 R2, arc R2 X R3, and line segments R3 R4 and R4 R1, as shown in Fig. 7. While the
location of P2 is as yet unfixed, we consider F3 = φP2(F3) and P3 the unique point
such that φP3(F3) = F4. The following two lemmas show that the face centers in R,
excluding X , are precisely the possible locations of P2.

Lemma 2 If P2 is not on the same side of R1 R2, R3 R4, and R4 R1 as X, then either
P2 or P3 is outside the boundary of Π .

Proof Since k′ = φ2
X (k), �′ = φ2

X (�), and P2 = φ2
X (P3), the result is immediate.

Lemma 3 The triangles �F2 P2 F3 and �F3 P3 F4 have nonintersecting interiors if
and only if P2 is inside C.
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Fig. 7 Construction of the region R in a near-symmetric patch with n = 7, thus side parameters [8, 7, 8],
and m = 4; P2 is included as an arbitrarily-chosen face center in R

Proof Consider a circle C′ centered at X of radius XY ; observe that φF2(C′) = C.
Since F3 = φ−1

F2
(P2), F3 is external to C′ precisely when P2 is external to C. But

whenever F3 is external to C′, 	 F4 F3 F2 is less than 	 F2 X F4 = 120◦, since they
subtend the same chord F2 F4 of the circle C′ centered at X . But then 	 P3 F3 P2 is
negative (since all angles are measured counterclockwise), and hence �F2 P2 F3, and
�F3 P3 F4 have intersecting interiors.

If X falls upon a face center and P2 is placed at X , then P3 would also be at X .
The deletion of the two sectors originating in P2 and P3 would result in a quadrilateral
face, rather than two pentagonal faces; obviously this is not permitted. With this fact
and the two preceding lemmas, P2 can be located at any face center in R other than
X .

However, while all these face centers are feasible, counting these face centers would
double-count certain patches. Specifically, if both P2 and P3 lie in R, then that patch
would be counted twice. Hence we will construct a new region R′ contained in R
which avoids this problem without undercounting.

Let R′
2 be the point on R1 R2 such that X R′

2 is perpendicular to R1 R2; similarly
define R′

3 on R3 R4 so that X R′
3 is perpendicular to R3 R4. Then 	 R′

2 X R′
3 = 120◦.

Thus if a face center in the pentagonal region R1 R′
2 X R′

3 R4 has its rotation by φ2
X also

in R1 R′
2 X R′

3 R4, it must lie along X R′
2. Thus we define R′ to be the pentagonal region

R1 R′
2 X R′

3 R4 less the boundary segment X R′
2 where neither X nor R′

2 is in R′.

Counting symmetric patches with exactly 3 pentagonal faces

To count all [n, n, n] patches, we begin by counting all [n, n, n] patches with P1
distance m from F1. This is simply the number of faces centered in region R′; for
clarity, a face is in R′ if its center is in R′. We place P1 at a distance of m from F1 where
n/2 ≤ m ≤ n. If P1 is distance m < n/2 from F1, then P1 is distance (n − m) > n/2
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Fig. 8 The counting region R′ in a near-symmetric patch with n = 7, thus side parameters [8, 7, 8] and
m = 4
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Fig. 9 The counting region R′ in a symmetric patch with n = 8, thus side parameters [8, 8, 8], and m = 5

from T1, and via a graph isomorphism is counted in the other configuration. The first
of the following lemmas considers P1 neither at the midpoint of F1T1 nor at T1.

Lemma 4 Let m and n be fixed positive integers with n/2 < m < n. Then the number
of non-isomorphic patches that have side parameters [n, n, n] and a pentagon distance
m from a corner is

h(n, m) =
{

1
6 (n2 + 2mn + 3n − 2m2) if m + n ≡ 0 (mod 3)
1
6 (n2 + 2mn + 3n − 2m2 + 2) else.

Proof To prove this result, we need to count the number of faces in region R′; for
purpose of illustration, Fig. 9 may be consulted. First notice that the length of R4 R1
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is m and both R4 and R1 are in R′, so the number of faces on R4 R1 is m + 1. Also,
notice that the length of R1 R′

2 (and thus of R′
3 R4) is (n − m)/2 with R1 (respectively

R4) on the center of a face and R′
2 (respectively R′

3) on the center of face if and only
if (n − m)/2 is an integer.

To proceed, we count the number of faces in each row starting at the row on R4 R1.
Each subsequent row has exactly one more face until the row just prior to or containing
R′

2 and R′
3. After this, the length of each row decreases by 3 until we reach the final

row (prior to that row containing X ) which has 0, 1, or 2 faces in it. If (n − m)/2 is
an integer, the total number of faces in R′ is

(n−m)/2∑

k=1

(m + k) +
�(m+n)/6�∑

k=0

(
m + n − m

2
− 3k

)
.

The first sum counts all faces in the rows strictly before the row containing R′
2, and

the second sum counts all faces in the rows at R′
2 or after it. The upper index of the

second sum is �(m +n)/6� because the summands are decreasing until m + n−m
2 −3k

equals 0, 1, or 2. Solving for k gives the desired upper index.
If (n − m)/2 is not an integer, then the total number of faces in R′ is

(n−m+1)/2∑

k=1

(m + k) +
�(m+n−3)/6�∑

k=0

(
m − 2 + n − m + 1

2
− 3k

)
.

The first sum again counts all faces in the rows strictly before the row containing R′
2.

Notice the row directly preceding R′
2 has two fewer faces than the row after it. Each

subsequent row has three fewer faces which accounts for the the second sum.
These sums can be evaluated by considering the the parity of n−m and the remainder

of n + m when dividing by 6. If n is even and (n + m)/6 is an integer, we see that the
number of faces is

(n−m)/2∑

k=1

(m + k) +
(m+n)/6∑

k=0

(
m + n − m

2
− 3k

)

which simplifies to
1

6
(n2 + 2mn + 3n − 2m2).

The other cases can be evaluated similarly to get the closed form stated in the
lemma.

We now consider a [n, n, n] patch with P1 distance exactly m = n/2 from a
corner, where n is even. This configuration leads to additional double-counting when
enumerating patches by placement of P2 within R′, as P1 is the midpoint of the side
of Π opposite T2. Thus if P2 and P ′

2 are possible positions for the second pentagonal
face, with respective third pentagonal faces at P3 and P ′

3, we must be careful that we
do not count both configurations when P3 and P ′

3 are symmetric in Λ with respect to
the reflection through T2 X .
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This can occur in exactly two ways; for the sake of explaining these cases, we let
R5 be the midpoint of R4 R1 and note that X R5 bisects R′. The first case we must
consider occurs when P2 is in �X R4 R5. If P ′

2 is the reflection of P2 through R4 X ,
P3 = φ−2

X (P2), and P ′
3 = φ−2

X (P ′
2), then it is trivial to see that P ′

3 is the reflection of
P3 through T2 X ; we must not count both the positions of P2 and P ′

2 as unique. On
the other hand, suppose P2 is in �X R5 R1 but not on X R5. Then if P3 = φ−2

X (P2)

and P ′
3 is the reflection of P3 through T2 X , then P ′

3 is in �X R1 R′
2 inside R′; we

must not count both the positions of P2 and P ′
3 as unique. So the face centers we must

consider as all possible positions of P2 with no double-counting are precisely those
in the equilateral triangle �R1 X R4, not including X . There are n

2 + 1 faces on R1 R4;
each row of faces in �R1 X R4 distance k from R1 R4 has n

2 + 1 − k faces with the
farthest row being distance n

2 − 1 from R1 R4 (since X isn’t included). Thus, the total
number of faces in �R1 X R4 is

n
2 −1∑

k=0

n

2
+ 1 − k = n(n + 6)

8
.

The following lemma summarizes this result.

Lemma 5 Let n be a fixed even integer. Then the number of non-isomorphic patches
that have side parameters [n, n, n] and a pentagon distance n/2 from a corner is

h(n, n/2) = n(n + 6)

8
.

So far, we have found the number of non-isomorphic symmetric patches having a
fixed pentagon P1 distance m from a corner with n/2 ≤ m < n. We now explore the
case where m = n. In this case, R1 = R′

2 and R4 = R′
3, so the region R′ is simply

the triangle X R4 R1 (not including the line segment R1 X and its endpoints). This
configuration will lead to double-counting when enumerating patches by placements
of P2 in R′. Again, for notational purposes, we let R5 be the midpoint of R1 R4 and
let R′

5 = φ−2
X (R5), which is the midpoint of T2 F4. Also, let P2 and P ′

2 be possible
positions for the second pentagonal face in R′ and P3 and P ′

3 their respective positions
for the third pentagonal face. We must not count both positions P2 and P ′

2 when P3
and P ′

3 are symmetric about R′
5 X . However, P3 and P ′

3 being reflections about R′
5 X is

the same as P2 and P ′
2 being reflections about R5 X ; thus, the region in R′ that avoids

double counting is the triangle �R5 X R4 not including X . The following lemma counts
the number of faces in this region.

Lemma 6 Let n be a fixed positive integer. Then the number of non-isomorphic patches
that have side parameters [n, n, n] and a pentagon on a corner is

h(n, n) =

⎧
⎪⎪⎨

⎪⎪⎩

1
12 (n2 + 6n) if n ≡ 0 (mod 6)
1

12 (n2 + 6n + 5) if n ≡ 1, 5 (mod 6)
1

12 (n2 + 6n + 8) if n ≡ 2, 4 (mod 6)
1

12 (n2 + 6n − 3) if n ≡ 3 (mod 6)
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Proof If n is even, the number of faces on R4 R5 is n/2 + 1. The subsequent rows
distance d from R4 R5 have

n

2
+ 1 −

⌈
3d

2

⌉

faces with the farthest row distance �(n + 2)/3�, since X is centered on a face only
when n is a multiple of 3. Thus, if n is even, the total number of faces in �R5 X R4 not
including X is

�(n+2)/3�∑

d=0

n

2
+ 1 −

⌈
3d

2

⌉
.

If n is odd, the number of faces on R4 R5 is (n+1)/2. The subsequent rows distance
d from R4 R5 have

n + 1

2
−

⌊
3d

2

⌋

faces with the farthest row distance �(n + 2)/3�. Thus, if n is odd, the total number
of faces in �R5 X R4 not including X is

�(n+2)/3�∑

d=0

n + 1

2
−

⌊
3d

2

⌋
.

The cases above show that the computations will differ based on the remainder of
n/6. We examine the case where n is congruent to 1 mod 6 in detail, and note that the
other cases are similar. In this case, we write n = 6q + 1 and see that the upper index
on the sum is 2q. The desired sum becomes

2q∑

d=0

(
3q + 1 −

⌊
3d

2

⌋)
= (3q + 1)(2q + 1) −

2q∑

d=0

⌊
3d

2

⌋
.

The final sum can be evaluated by noting that

2q∑

d=0

⌊
3d

2

⌋
=

3q∑

k=1

k −
q∑

k=1

(3k − 1).

Thus the total number of faces in �R5 X R4 not including X is

(3q + 1)(2q + 1) − 3q(3q + 1)

2
+ 3q(q + 1)

2
− q = 3q2 + 4q + 1.

By rewriting q in terms of n, we get the desired result.
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We now have a formula for the number of symmetric patches with a pentagon at
fixed distance m from a corner. However, summing over all m overcounts the number
of nonisomorphic patches because more than one pentagon may lie on the boundary.
For instance, if m is fixed and the second pentagon P2 is placed on the line R1 R4, P3
is forced to be on the boundary F4T2, and then P3 is some distance m′ from a corner.
Hence its patch would be counted when P1 is distance m′ from F1.

The next lemmas consider the case where either P2 or P3 is also on the boundary
of Π and nearer to a corner than P1 is to T1. We will exclude such cases in the overall
count.

Lemma 7 Let n and m be fixed positive integers with n/2 < m < n. Then there are
2n − 2m − 1 patches having side parameters [n, n, n], a pentagon distance m from a
corner, and another pentagon on the boundary distance less than n − m to a corner.

Proof Let P1 be distance m from F1. Then R1 is distance m from T1, making R1 R′
2

nearer to the corner T2 than to T1. If P2 is on the boundary of Π , it must be on R1 R′
2;

if also the distance from P2 to T2 is less than n − m, then P2 cannot be R1.
On the other hand, if P3 is on the boundary of Π , then either P3 is on R′

2T2 or on
T2 F4. If P3 is on R′

2T2, then this distance from P3 to T2 is less than n − m; this occurs
only when P2 is on R′

3 R4. If instead P3 is on T2 F4 and distance less than n − m from
T2, then P2 must be on R4 R1 and distance less than n − m from R4. So we can count
exactly those positions of P2 along the boundary of R′ which we have just described.
The line segments R′

3 R4 and R1 R′
2 excluding R1 and R′

2 give (n − m) positions for
P2, and the portion of the segment R4 R1 distance less than n − m to R4 but not at R4
gives (n − m − 1) positions. Summing these, the result holds.

Lemma 8 Let n be a fixed even integer. Then there are n/2 patches having side
parameters [n, n, n], a pentagon distance n/2 from a corner, and another pentagon
on the boundary distance less than n/2 to a corner.

Proof The pentagon distance n/2 from a corner will be P1. Then as before, for another
pentagon to be on the boundary, P2 must be on R′

3 R4 (including endpoints), R1 R′
2 (not

including endpoints), or on the closest n − m − 1 faces to R4 on R4 R1 not including
R1. Accounting for our previous isomorphisms, P2 must be on R4 R1 not including
R1. There are n/2 such faces.

Combining these lemmas yields the following theorem.

Theorem 1 The number of non-isomorphic patches with side parameters [n, n, n]
and a pentagon on the boundary is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
18 (2n3 + 24n − 18) if n ≡ 0 (mod 6)
1
18 (2n3 + 15n + 1) if n ≡ 1 (mod 6)
1
18 (2n3 + 24n − 10) if n ≡ 2 (mod 6)
1
18 (2n3 + 15n − 9) if n ≡ 3 (mod 6)
1
18 (2n3 + 24n − 8) if n ≡ 4 (mod 6)
1
18 (2n3 + 15n − 1) if n ≡ 5 (mod 6)
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Proof We first count the number of non-isomorphic patches with a pentagon on the
corner; then we count the number of non-isomorphic patches with a pentagon distance
m from a corner with n/2 < m < n and subtract the number of patches that are counted
twice. Finally, if n is even, we count the number of patches with a pentagon distance
n/2 from a corner and subtract the number of patches that are counted twice. Thus, if
n is even, we evaluate the sum

h(n, n) +
⎛

⎝
n−1∑

m=n/2+1

(h(n, m) − (2n − 2m − 1))

⎞

⎠ + h(n, n/2) − n/2,

and the total number if n is odd is

h(n, n) +
n−1∑

m=(n+1)/2

(h(n, m) − (2n − 2m − 1)) .

The simplification of these sums requires knowing the remainder of n when dividing
by 6. We examine the case where n = 6q + 2 in detail and note that the other cases
are similar. Notice the sum

n−1∑

m=n/2+1

(h(n, m) − (2n − 2m − 1))

has 3q terms. Of these terms, q of them come from an index m which is congruent to 1
mod 3 (thus ensuring n + m is congruent to 0 mod 3). Using the formula in Lemma 4,
the sum can be rewritten as

n−1∑

m=n/2+1

(
1

6
(n2 + 2nm + 3n − 2m2 + 2) − (2n − 2m − 1)

)
− 1

3
q

or more simply

1

72

(
8n3 − 15n2 + 42n − 88

)
.

Thus, using Lemmas 5 and 6, the total number of patches is given by

1

12
(n2 + 6n + 8) + 1

72

(
8n3 − 15n2 + 42n − 88

)
+ n(n + 6)

8
− n

2

which can be simplified to the desired result.

These results agree with the numbers found by Brinkmann and Van Cleemput in
their recursive algorithm in [3].
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Counting near-symmetric patches with exactly 3 pentagonal faces

The construction of the region R′ in the near-symmetric case is exactly the same as
in the symmetric case; in fact, Fig. 7 depicted a near-symmetric patch, and Fig. 8
depicted its counting region R′. However, determining whether F1T1 or T1T2 is on
the shorter side or a longer side has an effect on the enumeration of positions for P2.
We first consider all near-symmetric patches that have a pentagon on a longer side.
For near-symmetric patches with side parameters [n, n + 1, n + 1] and a pentagon on
a side of length n + 1, we draw the patch such that T1T2 has length n. We again fix P1
at distance m from F1, and as long as m 	= 0, the counting process is the same.

Lemma 9 Let n and m be fixed positive integers with 1 ≤ m ≤ n + 1. Then the
number of non-isomorphic patches that have side parameters [n, n + 1, n + 1] with a
pentagon on a side of length n + 1 distance m from the (n + 1, n + 1)-corner is

f (n, m) =
{

1
6 (n2 + 2mn + 7n − 2m2 − 2m + 4) if n + m − 1 ≡ 0 (mod 3)
1
6 (n2 + 2mn + 7n − 2m2 − 2m + 6) else.

Proof After fixing P1, we need to count the number of possible positions for P2 which
is equivalent to the number of faces in region R′. Notice that the length of R4 R1 is
m + 1 and both R4 and R1 are in R′, so the number of faces on R4 R1 is m + 2. Also,
notice the length of R1 R′

2 is (n − m)/2 with R1 on the center of a face if and only if
(n − m)/2 is an integer. This proof is almost identical to the proof of Lemma 4, so we
omit some of the details here. If (n − m)/2 is an integer, the total number of faces in
R′ is

(n−m)/2∑

k=1

(m + 1 + k) +
�(m+n+2)/6�∑

k=0

(
m + 1 + n − m

2
− 3k

)
,

and if (n − m) is odd, the total number of faces in R′ is

(n−m+1)/2∑

k=1

(m + 1 + k) +
�(m+n+3)/6�∑

k=0

(
m − 1 + n − m + 1

2
− 3k

)
.

When m = 0, which occurs when P1 = F1, it is not the case that placing P2 at each
face center in R′ results in a non-isomorphic patch. Since the patch Π has three sides
and three corners, we can think of P1 as the opposite corner to the side T1T2. If P2
and P ′

2 are possible positions for the second pentagonal face, with respective third
pentagonal faces P3 and P ′

3, we must ensure that we do not count both configurations
when P3 and P ′

2 are symmetric with respect to reflection through R′
2 X .

Again we denote by R5 the midpoint of R1 R4. Suppose P2 is in the quadrilateral
R′

3 R4 R5 X , excluding X and P3 = φ−2
X (P2). Then the reflection of P3 through X R′

2
is in the quadrilateral R1 R′

2 X R5. Hence we count only those face centers in one of
those quadrilaterals as possible locations for P2.
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Lemma 10 Let n be a fixed positive integer. Then the number of non-isomorphic
patches that have side parameters [n, n+1, n+1] and a pentagon on the (n+1, n+1)-
corner is

f (n, 0) =

⎧
⎪⎪⎨

⎪⎪⎩

1
12 (n2 + 10n + 12) if n ≡ 0, 2 (mod 6)
1

12 (n2 + 10n + 1) if n ≡ 1 (mod 6)
1

12 (n2 + 10n + 9) if n ≡ 3, 5 (mod 6)
1

12 (n2 + 10n + 4) if n ≡ 4 (mod 6)

Proof This proof is very similar to the proof of Lemma 6.
We count the number of faces centered in the quadrilateral R1 R′

2 X R5, excluding
X . The length of R1 R′

2 is n/2. Thus there are n/2 + 1 faces on the row if n is even
and (n + 1)/2 faces if n is odd.

If n is even, each subsequent row at distance d from R1 R′
2 has

n

2
+ 2 −

⌈
3d

2

⌉

faces with the farthest row at distance �(n + 1)/3�. The reason for this is that X is
centered on a face only when n+2 is divisible by 3. Thus, if n is even, the total number
of faces in quadrilateral R1 R′

2 X R5 (excluding X ) is

n

2
+ 1 +

�(n+1)/3�∑

d=1

(
n

2
+ 2 −

⌈
3d

2

⌉)
.

If n is odd, we have a similar scenario and see that the number of faces in R1 R′
2 X R5

(excluding X ) is

n + 1

2
+

�(n+1)/3�∑

d=1

(
n + 1

2
+ 1 −

⌊
3d

2

⌋)
.

These expressions can be algebraically simplified to the closed form above.

For near-symmetric patches with side parameters [n, n + 1, n + 1] and a pentagon
on the side of length n, we draw the patch with F1T1 of length n and both T1T2 and
T2 F4 of length n + 1. For such patches, we only need to consider the pentagon P1
being distance m from F1 where n/2 ≤ m ≤ n. If P1 is distance less than n/2 from
F1, then it is at least n/2 distance from T1; such a patch would be counted in the other
configuration. As the cases for m = n

2 and m = n require extra care, we begin by
excluding them.

Lemma 11 Let n and m be positive integers with n/2 < m < n. Then the number of
non-isomorphic patches that have side parameters [n, n + 1, n + 1] and a pentagon
on the side of length n at distance m from a corner is
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g(n, m) = h(n, m) =
{

1
6 (n2 + 2mn + 3n − 2m2) if n + m ≡ 0 (mod 3)
1
6 (n2 + 2mn + 3n − 2m2 + 2) else.

Proof Note that R1 R4 has length m and R1 R′
2 has length (n − m)/2. Thus, to count

the face centers in R′ we use the same technique as Lemma 4.

When there is a pentagon on the side of length n and distance exactly n/2 from a
corner, we use similar arguments as the symmetric case and get the following lemma
extending the definition of g.

Lemma 12 Let n be a fixed even integer. Then the number of non-isomorphic patches
that have side parameters [n, n + 1, n + 1] and a pentagon on the side of length n at
distance n/2 from a corner is

g(n, n/2) = h(n, n/2) = n(n + 6)

8
.

Each of these lemmas allows us to count the number of non-isomorphic near-
symmetric patches when a pentagon is in a fixed position on a particular side. However,
some of these cases overlap; for instance, those cases with pentagons on two sides
could be counted twice. Therefore, we need to consider all ways we could possibly
be double-counting before finding the total. The next result counts those patches with
one pentagon on each long side of the boundary, F1 in the (n + 1, n + 1)-corner, and
the distance from P2 to F4 greater than P1 to F1.

Lemma 13 Let n and m1 be fixed positive integers with 0 ≤ m1 ≤ n +1. The number
of non-isomorphic patches having side parameters [n, n + 1, n + 1], a pentagon on
a long side at distance m1 from the (n + 1, n + 1)-corner, and another pentagon on
the other long side at distance m2 > m1 from the (n + 1, n + 1)-corner is

⎧
⎪⎨

⎪⎩

1 if m1 = 0,

m1 + 2 if 0 < m1 < n/2, and

n − m1 + 1 if m1 ≥ n/2.

Proof We draw the patch as usual with P1 distance m1 from F1. The other long side
of the patch is T2 F4 and P2 cannot be on that side. If P3 is on the long side and is
distance m2 > m1 from F4, the P3 is less than n + 1 − m1 from T2. Since T2 maps
to R4 in our 120 degree rotation about X , we see that P2 must be on R4 R1 and be
distance less than n + 1 − m1 from R4. There are exactly m1 + 2 faces on R1 R4.

If m = 0, our acceptable region is the quadrilateral R5 R1 R′
2 X , and there is only 1

place for P2 on the line R5 R1. If m1 < n/2 and P2 is anywhere on R4 R1, P3 will be
on the other long side at distance more than m1 from the (n + 1, n + 1)-corner. There
are m1 + 2 possible positions for P2. On the other hand, if m1 ≥ n/2, then P2 can
only be in the first n − m1 + 1 positions along R4 R1.

Now we consider double-counting patches with a pentagon on both a long side and
short side.
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Lemma 14 Let n be a fixed positive integer. The number of non-isomorphic patches
having side parameters [n, n + 1, n + 1], a pentagon on a long side, and a pentagon
on a short side not including the short side’s corners is �n2/2�.

Proof Consider fixing P1 at distance m from F1. If m = 0 and P2 is on T1T2 (the
short side), then P2 is on R1 R′

2 including R′
2 (which is in the allowable region in this

case) but not including R1 which is on the corner T1. Thus there are �n/2� positions
for P2.

If 0 < m < n + 1, then P2 could be on all of R1 R′
2 not including R′

2 (which is not
in R′). There are �(n − m)/2� + 1 valid positions. However, P3 could also be on the
short side T1T2, which occurs when P2 is on R′

3 R4. In this case, P2 cannot be on R4
because then P3 would be on the corner T2. Thus, there are �(n − m)/2�− 1 positions
for P2 here for a total of n − m places.

If m = n + 1, neither P2 nor P3 can be on T1T2, so there are no patches to count
in this case. Summing over all m yields a total of

⌊n

2

⌋
+

n∑

m=1

(n − m) =
⌊

n2

2

⌋

patches satisfying the given criteria.

The final theorem gives a formula for the total number of near-symmetric patches
with at least one pentagon on the boundary. These results agree with the values found
by the recursive algorithm in [3].

Theorem 2 The number of non-isomorphic patches with side parameters [n, n +
1, n + 1] and at least one pentagon on the boundary is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
6 (2n3 + 4n2 + 8n) if n ≡ 0, 2 (mod 6)
1
6 (2n3 + 4n2 + 5n + 1) if n ≡ 1 (mod 6)
1
6 (2n3 + 4n2 + 5n + 3) if n ≡ 3, 5 (mod 6)
1
6 (2n3 + 4n2 + 8n − 2) if n ≡ 4 (mod 6)

Proof We start by counting all such patches with a pentagon on the (n + 1, n + 1)-
corner. There are f (n, 0) of these. We then count the patches with a pentagon on a
side of length n +1 at distance m from the (n +1, n +1) corner where 1 ≤ m ≤ n +1;
however, we must subtract the number of patches that have two pentagons on long
sides that will be counted twice. We then add in all patches with a pentagon on the
short side and subtract those that were previously counted if they also had a pentagon
on the long side. Finally, we notice that some patches have a pentagon on all three
sides, and we need to add those back in. This occurs exactly when there is a pentagon
on the long side at distance m from the (n + 1, n + 1)-corner with 1 ≤ m < n/2 and
P2 is at R1, equalling

⌊ n
2

⌋ − 1 cases. Thus, the total number is
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f (n, 0) +
n+1∑

m=1

f (n, m) −
⎛

⎝1 +
�n/2�−1∑

m=1

(m + 2) +
n+1∑

m=�n/2�
(n − m + 1)

⎞

⎠

+
n−1∑

�n/2�+1

g(n, m) + (n − 1 mod 2)g(n, n/2) −
⌊

n2

2

⌋
+

⌈n

2

⌉
− 1

Again, these sums require some care to simplify. Using similar techniques to those
used previously, the stated result holds.
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